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It has been argued that flaws exist in the standard nucleation theory of polymer crystal growth because 
this theory seems to predict that the notches observed in twin crystals of polyethylene should fill out so 
rapidly as not to be observable. However, I argue that the observed growth in the notch is reconcilable 
with standard nucleation theory. When proper consideration is taken for the ability of polymer chains to 
diffuse into the notch, the observed nucleation rates are not surprising. I consider four separate cases. In 
the first case, I assume that polymers, although attracted by the growth front, are not attracted strongly 
enough to be adsorbed prior to crystallization. In the second case, I assume that polymers adsorb readily 
on the crystal face, and then crystallize very near the point of first contact. In the third case, I assume 
that chains adsorb on the growth front prior to crystallization and that they are able to diffuse about on 
the growth front through large distances prior to crystallization. In the fourth case, polymers adsorb rather 
weakly, and reversibly, attaching and reattaching a number of times prior to crystallization. I am able to 
rule out the second case, while all the others predict a lower than expected nucleation rate and also predict 
the observed molecular weight and temperature trends, 
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I N T R O D U C T I O N  

Twin polyethylene single crystals are known to grow 
from dilute solution. A range of structures can be 
observed depending on such things as crystallization 
temperature, but under certain conditions, structures 
such as the one shown in Figure 1 are observed. Sadler 
and co-workers l'z discuss the structures that are formed 
as a function of both crystallization temperature and 
molecular weight. The notches present on such crystals, 
such as the one formed by the intersection of the ( i l0)  
and the (110) planes in Figure I are of particular interest. 
As Sadler and co-workers L2 have pointed out, the 
standard nucleation theory of polymer crystallization 3 is 
hard put to explain the existence of these notches. The 
reason for this is most obvious in Figure 2, which displays 
the crystal structure in the vicinity of such a notch. As 
can be seen in Figure 2, site A is expected to be a very 
active site for the addition of new polymer stems because 
a new stem can be added with no additional surface area. 
This is to be contrasted with addition away from the 
notch, such as at site B, which requires creation of new 
crystal surface. Addition at sites such as site B in Figure 2 
is deemed, in the standard nucleation theory 3, to require 
surmounting a large nucleation barrier, while the 
nucleation barrier for site A should either be non-existent 
or very small. 

On the basis of the above statements, one would argue 
that such notches should not be observed at all because 
any that did exist would rapidly fill out. Such notches 
do exhibit enhanced growth, but at nothing like the rate 
one would expect on the basis of standard nucleation 
theory 1'2. This paper presents an explanation of the 
growth of these crystals (including temperature and 

molecular weight trends) without abandoning the 
standard nucleation model. A number of other papers 
from this institute address the issue of curved crystals 4-1°. 

The observed nucleation rates in the notch decrease 
with either increasing molecular weight or increasing 
temperature 1'2. A complete explanation would require 
me to explain not only the lower than expected nucleation 
rates, but the observed temperature and molecular weight 
trends as well. 

Nucleation rates in the notch prove to be smaller than 
expected because the notch is not directly accessible. 
Because of gaps in the understanding of polymer 
crystallization, I find it necessary to consider a number 
of separate cases. These are considered individually in the 
following sections. This paper calls upon a rather 
large number of mathematical models and computer 
simulations to support its contentions. To avoid 
distraction from the central theme of the paper, these are 
all relegated to a number of appendices. 

CASE A 
In this section I consider the case of weak attraction 
between dissolved chains and the crystal growth front. 
Chains in the vicinity of a weakly attracting fiat wall are 
repelled by the wall. This fact is discussed in Appendix 
1. Chains near walls have less entropy than those in bulk 
solution. Unless the attraction is sufficiently strong, the 
attractive energy will not compensate for the decrease in 
entropy and the wall will repel the polymer. As the 
attraction strength increases, the chains undergo a 
transition to adsorption. This transition is not abrupt, 
so the definition of the position of the transition is rather 
vague. The definition adopted here is the point at which 
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Figure 1 Typical structure of the polyethylene twin crystals 
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Figure 2 Nucleation in the notch (site A) is expected to occur much 
more rapidly than on a flat surface (site B) because no new surface is 
created during nucleation in the notch 

the partition function of chains near the wall equals the 
partition function of chains distant from the wall. 
Appendix 4 calculates the position of the adsorption 
transition for the chain model introduced in Appendix 3. 

In this section, I consider the case in which the 
attraction between dissolved polymer and the growth 
front is so weak that dissolved chains are repelled by the 
growth front. This case is contrary to the generally 
accepted belief that polymers adsorb on the crystal face 
prior to crystallization. Note however, that there are no 
compelling reasons why the adsorption temperature 
should coincide or be correlated with the dissolution 
temperature because the one concerns polymers at 
interfaces while the other concerns polymers in bulk 
phases. If chains are repelled by the growth front, then 
the repulsion between chain and crystal represents an 
entropic contribution to the nucleation barrier. Chains 
probably do adsorb prior to crystallization, but I choose 
here to also consider this less likely possibility. 

Appendices 2 and 3 consider the statistics of ideal 
chains near notches formed as the intersection of two 
semi-infinite planes. These appendices indicate that 
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polymers are repelled more strongly by a notch than by 
a fiat plane if they are on the desorption side of the 
adsorption transition. This is to be expected because the 
chain loses even more entropy near a notch than near a 
flat wall. Conversely, on the adsorption side of the 
transition, polymers are preferentially attracted by the 
notch. Either effect, adsorption or repulsion, becomes 
more pronounced with increasing molecular weight. 

With the assumption that polymer chains are repelled 
by the growth front, these results predict a lower than 
expected nucleation rate within the notch. They are also 
consistent with the observed molecular weight and 
temperature trends because the repulsion of the notch 
becomes stronger with either increasing molecular weight 
or temperature. 

CASE B 

In this section I consider the case in which the attraction 
between dissolved chains and the growth front is strong 
enough that polymers adsorb prior to crystallization, and 
that they both adsorb and crystallize at sites very near 
the point of first contact between the chain and the 
crystal. 

The results of Appendices 5-8 firmly establish that 
Brownian particles make first contact in notches or with 
wedges with a probability density proportional to d ~"/2 -~ 
for c~ the angle subtended by the notch (~ < re/2) or wedge 
(~t > 7z/2) and with d the distance from the vertex. Thus, 
the probability density vanishes at d--- 0 for a notch, and 
diverges at d = 0  for a wedge. Consequently, we predict 
that most polymer chains diffusing up to the crystal make 
first contact with the crystal at site near the horns, and 
that first contacts in the vicinity of the notch are very 
infrequent (see Appendix 8.) 

Appendices 5-8 treat diffusing polymers as structure- 
less Brownian particles, and lead to the assertion that 
probabilities of first contact scale as d °s93 near the notch, 
becoming very small as d decreases. I am, of course, 
concerned with nucleation occurrin~g at one particular 
lattice site over length scales of a few A (site A in Figure 2) 
and therefore cannot neglect the internal structure of the 
chain. The power law d 0"593 undoubtedly holds over 
length scales d such that Rg<<d<<C, for R~ the bulk 
solution radius of gyration and C the macroscopic 
dimension of the crystal. Very near the notch, at length 
scales d<<Rg and comparable to lattice dimensions, I 
expect the first contact probability to be even smaller 
than the power law expression. 

Appendices 5-8 predict a highly non-uniform first- 
contact probability. Therefore, the case examined here, 
crystallization near sites of first contact, is untenable 
because the crystal growth front is uniform. This only 
allows two other possibilities. Under cases of strong 
adsorption, the chains must become adsorbed at the site 
of first contact, then diffuse along the surface before 
crystallizing. In the case of somewhat weaker adsorption 
(but not so weak that case A above applies) the chains 
may or may not adsorb near the point of first contact, 
and may adsorb and desorb several times before finally 
crystallizing. These cases are examined in the next two 
sections. 

CASE C 

In this case, I assume that polymers are attracted strongly 



by the crystal, so strongly that they adsorb irreversibly 
at or near the site of first contact between the polymer 
and the crystal, and that they subsequently diffuse about  
on the crystal before crystallizing. As pointed out above, 
the assumption of surface diffusion prior to crystallization 
is necessary because the growth front is uniform while the 
distribution of first contacts is very non-uniform. The 
chains probably diffuse about  on the surface until they 
find either a niche or until they nucleate at some other 
site. First contact is very probable near the horns of the 
crystal, but very improbable near the notch. Therefore, 
chains which crystallize in the notch must diffuse into 
the notch from long distances, without nucleating at any 
other sites. This probably accounts, at least in part,  for 
the smaller than expected nucleation rates in the notch. 

The notch attracts the chain more strongly than a fiat 
wall, as indicated by the results of Appendix 3. The 
strength of this attraction increases with decreasing 
temperature, and this temperature dependence most 
probably accounts for the observed temperature 
dependence of notch nucleation. Surface diffusion must 
certainly decrease with increasing molecular weight, 
accounting for the molecular weight trends observed. 
Barring any strong temperature dependence of the surface 
diffusivities permits me to explain both molecular weight 
and temperature trends. 

CASE D 

In this case I assume that the attraction between 
the chain and the growth front is somewhat weaker, so 
that adsorption does not necessarily occur at the point 
of first contact, or is not necessarily irreversible. However, 
I am assuming that adsorption does occur prior to 
crystallization. 

In this case, contacts with the notch will still be 
preceded by a number of contacts at other sites 
(subsequent to the moment  of first contact which only 
rarely occurs in the notch). Notch nucleation is still 
hampered by transport  into the notch. The arguments 
given above for case C probably still apply. 

S U M M A R Y  AND D I S C U S S I O N  

I have considered a number  of separate cases in an effort 
to understand the failure of chains to nucleate rapidly in 
the notch of polyethylene. Case A is characterized by a 
weak attraction between dissolved polymers and the 
growth front, so weak that adsorption prior to 
crystallization is not expected. Cases B and C are both 
characterized by strong attraction with irreversible 
adsorption immmediately after first contact. Case B is 
further characterized by the assumption that crystal- 
lization also occurs near the point of first contact, while 
case C assumes surface diffusion of adsorbed chains prior 
to crystallization. Case B proves to be unacceptable (first 
contact distributions are very non-uniform.) Case D is 
the case of intermediate attraction, characterized by 
adsorption prior to crystallization, but adsorption which 
is either reversible or which does not necessarily occur 
at the point of first contact. Of  the three acceptable cases 
(A, C, and D), case C most  closely corresponds to the 
current paradigm of polymer crystallization, but it is 
notable that in all three cases, I am able to explain the 
smaller than expected notch nucleation rates and the 
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temperature and molecular weight dependence of these 
rates. 

The problem is one of accessibility of the notch. The 
notch is indeed a site of very favourable nucleation, but 
chains cannot nucleate in the notch until they arrive there. 
In case A, chains are excluded from the notch by their 
own entropy, in cases C and D by inefficient transport.  

Another possibility suggested to the author by 
Professor J. D. Hoffman, which I have not discussed 
prior to this point, also exists. Chains in the vicinity of 
the notch (especially at high molecular weight) may 
simultaneously nucleate on both flat faces, leaving a 
non-crystalline chain segment spanning the notch and 
poisoning the notch to any subsequent nucleation. This 
occurrence might also be responsible for the lack of 
nucleation in the notch. 
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A P P E N D I X  1 

Ideal chains near a f iat  wall 

This is a well-known problem, discussed, for example, 
by DiMarzio and Rubin 11. The case in which the wall 
shows no attraction or repulsion for the polymer is most 
easily treated as the solution of the diffusion equation 1 a, t4 

(iw 
- - = D V 2 W  (1) 
(it 

POLYMER, 1989, Vol 30, September 1625 



Statistics of polymer chains: M. L. Mansfield 

subject to the following boundary conditions: W=O at 
the wall, which is taken to be the z=0  plane; and 
W(r, t = O)= 6(ro-r), for 6 the Dirac delta function and 
for r0 the position of one end of the chain. In this 
formalism, W(r, ro, t) represents the statistical weight of 
chains having one end at r 0 and the other at r, and having 
t backbone bonds total. The Green's function of equation 
(1) in the absence of boundaries is, of course, 

(4rcDt) -a/2 e x p [ -  (r-ro)2/(4Dt)] (2) 

The solution with the boundary condition W= 0 at z = 0 
can then be easily written down by the method of images, 
with a source at (Xo, Y0, Zo), and a sink at 
(Xo, Yo,-Z0): 

W=(47zDt)-3/2{expI-(X-Xo)2-(;DYt O)2-(Z-Zo)21 

[- - (x -Xo) 2 - ( y -  yo) 2 - 

L 
The quantity 

P(ro, t)= Idr W(ro, r, t) (4) 

represents the statistical weight of all chains with one 
end at ro. The integral with W given by equation (3) is 
straightforward. I obtain 

P(zo, t)=erf[zo/2(Dt) 1/2] (5) 

P(zo, t) is zero at Zo =0, and increases monotonically to 
1 at values of Zo>>(Dt) ~/2. Note that (Dt) ~/2 is the radius 
of gyration that the chain would have in bulk solution, 
distant from any boundaries. This predicts a depletion 
layer near the wall, of thickness comparable to the radius 
of gyration of the chain. Chains avoid the wall because 
their configurational entropy decreases near the wall. 

The same differential equation techniques can be 
employed in the case that the polymer chain is attracted 
by the wall. This problem has been studied by DiMarzio 
and Rubin ~ and by Muthukumar ~4. I omit details and 
only point out that a depletion zone still exists in the 
case of weak attraction. Adsorption does not occur until 
the interaction becomes sufficiently strong. To adsorb on 
a wall, a chain must give up a great deal ofconflgurational 
entropy. If the energy decrease experienced upon 
adsorption is not large enough, the chain will tend to 
avoid the wall. 

APPENDIX 2 

Ideal chains near a non-attracting notch 
This problem requires solution of equation (1) in 

cylindrical coordinates (p, 0, z) subject to the boundary 
conditions W=0 at 0=  +~/2 and W~6(ro-r)  as t~0 ,  
where g is the dihedral angle between the two planes 
forming the notch. Figure3 displays the coordinate 
system employed. The solution for these boundary 
conditions is given by Carslaw and Jaeger is while 
Lauritzen and DiMarzio ~2 consider the special case 
0o = 0. The solution is 

I4I= 4ct - in- 1/2z- 3/2 exp[ - z- 1(z2 + p2 _1. p2)- i 

x ~ l,(2ppo/z) x sin[s(0 + ~/2)] sin[s(0 o + ~/2)] 
n = l  

(6) 

,z  ) 

Figure 3 Cylindrical coordinate system for solution of the diffusion 
equation in a notch 

where z=4Dt and s=nn/~. Lauritzen and DiMarzio 12 
perform the integral given in equation (4) for the special 
case of 0o = 0. Integration of W with general 0o, equation 
(6), proves to be no more difficult, and so is not detailed 
here. The result is: 

(--1)" 
P(Oo, Po) = 4rr- xzl/2 po - 1 exp( -  p2/2z),~=o (2n +-1) 

F(v + 1) cos(2V0o ) x M_ 1/2,,(p2o/Z) (7) 
F(2v + 1) 

where v = (2n + 1)n/(2ct), and M_ 1/z.v represents one of 
the Whittaker functions 16. The Whittaker functions can 
also be written ~6 in terms of one of the confluent 
hypergeometric functions, M(a, b, x): 

M_l/2,v(x)=e-Xx*+l/2M(l+v, l+2v,  x) (8) 

The confluent hypergeometric functions also obey the 
following relationshipsZ6: 

M( l+v ,  l+2v,  x)=eXM(v, l + 2 v , - x )  (9) 

M(v, l + 2 v , - x ) =  F(2v+l )  IXe_XPp,_l(l_p)~dp 
r(v + 1)r(v) Jo 

(rot 
Combining all the above permits me to write 

( -1)"  
P(Oo, Po) = (2/=) ~ - - - -  cos(2v00) x 2" 

,=oF(v+I )  

X F(x 2, p, v) dp (11) 

where x2= p2z and 

F(x 2, p, v)=e-X2VpV-l(1-p)~ (12) 

I may also write x = po/2R s for Rg the radius of gyration 
of the chain in bulk solution. 

Consider the limit po ~ ~ .  In that limit, x in equation 
(12) becomes large, so that the factor exp(-x2p) is 
non-negligible only for very small values of p. In that 
case we can neglect the factor (1-p)V in equation (12), 
it becomes arbitrarily close to unity for all non-negligible 
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values of the integrand as po--,oo. This permits me to 
use the following integral representation 17 of the gamma 
function: 

z ~ e - app'- ldp = F(v) (13) 

to obtain the series 

lim P(0o, po)=4 rc-~ ~ ( -  1)-~- cos(2v0o)= 1 (14) 
Oo-~ ,=o (2n+ 1) 

the sum in equation (14) being known t8. 
Values of P(Oo, Po) were computed according to 

equation (11), with the integral over F performed 
numerically. When 0 < v < 1, F(x z, p, v) has a singularity 
at p=0,  diverging as p,-1. To perform the integration 
under such circumstances, we write 

F(x z, p, v) =f(x 2, p, v)+p v-1 

the above serving as a definition of the function f. The 
function f has no singularity and can be easily integrated 
by Simpson's rule, for example. The integral of pV- ~ is 
just 1/v. 

Results are plotted in the form of contour plots shown 
in Figures4 and 5 for ~= 113 °, a value appropriate for 
polyethylene (100) twins. I should emphasize that 
Figures 4, 5, 7, and 8 display relative concentrations of 
chain ends. The overall monomer concentration was not 
calculated in any of the above cases. This could probably 
be done but it appears that it would be considerably 
more difficult. Until the question of whether or not Figure 5 
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Figure 4 Contour plot of the function P(0o, Po) which is proportional 
to the concentration of the ends of ideal chains in the vicinity of the 
notch. The length of the horizontal line equals the radius of gyration 
that the chain would have at sites distant from any barriers 

polymers begin crystallizing near their ends is resolved, 
the distinction between monomer concentrations and 
chain-end concentrations should not be taken too 
seriously. 

The results were found to be numerically indistinguish- 
able from the error function values given in equation (5) 
for sites along the wall distant from the notch, providing 
a check of the numerical procedure. The depletion 
observed near the wall becomes more severe in the 
vicinity of the notch. This is, of course, due to the fact 
that a chain near the notch experiences an even greater 
entropy reduction than one near a flat wall. 

All dependence on Po appears in the ratio po/Rg for 
Rg the bulk solution gyration radius. Therefore, the 
depletion near the notch becomes more severe as Rg 
increases, as expected. 

APPENDIX 3 

Ideal chains near an attractive notch 
This problem can also be treated by the differential 

equation formalism, but I expect it to be a very difficult 
boundary value problem and have chosen, therefore, not 
to make the attempt. I have been able to obtain useful 
results by considering a lattice model. I consider 
two-dimensional random walks confined to the hex- 
agonal area shown in Figure 6, with the walks confined 
to a triangular lattice within the hexagonal region. I let 
M denote the number of lattice sites along one edge of 
the hexagon. (For clarity, Figure 6 is drawn with M = 10, 
however, in the calculations I set M=100.) When 
M=100, there are 29701 lattice sites. As shown in 
Figurer, I let the letter A designate any one of the six 

POLYMER, 1989, Vol 30, September 1627 



Statistics of polymer chains: 114. L. Mansfield 

R B C E 

Figure 6 Schematic diagram of the lattice walk model. The six lattice 
sites in the corners are designated A, they contribute an energy - 2 a k T  
to any chain that visits them. The other sites along the walls are 
designated B, C, D, etc.; Z designates sites along the walls distant from 
both notches. The sites B, C, D . . . . .  Z contribute an energy - a k T t o  
any chain that visits them. Sites not adjacent to any wall contribute 
nothing to the energy 

lattice sites in the corners. I let the letter B represent any 
of the twelve sites along the walls immediately adjacent 
to the sites A. C represents sites along the walls adjacent 
to the B sites, etc. I let Z represent sites along the wall 
distant from any notch, i.e., near the middle of any wall. 
I consider random walks of N steps, visiting N + 1 lattice 
sites. Values of N were chosen (N = 100) so that at most 
a negligibly small fraction of chains in the ensemble could 
visit more than one notch, so that the results obtained 
for the enclosed domain of Figure 6 also apply to notches 
bounded by semi-infinite planes• The angle subtended by 
the two walls, 120 °, is not too far from the angle 
appropriate for (100) twin polyethylene crystals, about 
113 °. I assign an energy U s to the #th lattice site and 
define the total energy of the chain to be the sum of the 
U u values for all lattice sites visited by the chain. Uu = 0 
for all lattice sites except those at the boundaries. 
U u = - a k T  for sites along the walls except at the six 
lattice sites nearest the notches (the A sites in Figure 6), 
where Uu= -2akT; a is a variable parameter. Assigning 
a value of - 2 a k T  in the corners reflects the fact that 
chain segments in those positions are simultaneously 
attracted by two walls• 

The total energy of the chain which begins at site ~, 
stepping from there to site fl, from there to 7, and so 
forth through N steps to site co, is, of course, 

U = + U a + U r +  . . .  + U  o (15) 

We can also write the energy as the sum of contributions 
from individual steps, rather than lattice sites, if I first 
define 

Uu~= (U~ + U~)/2 (16) 

Then clearly, the total energy of the chain visiting sites 
• , fl, 7, .-. co is just 

Ud2 + U~ a + Ua~ + ... + U,o + U J 2  (17) 

The statistical weight of this chain is 

e x p ( -  UJ2kT)A,w,. . .  AraAp~ exp( -  UM2kT) (18) 

where A ~ = e x p ( - U J k T ) •  Au,, as defined, represents 
the statistical weights for steps from site # to site v on 
the lattice, provided # and v are nearest neighbour sites• 
I can extend the definition to encompass all pairs of sites 
if I write 

Auv = e x p [ -  (Uu + Uv)/2kT ] (19a) 

if p and v are nearest-neighbour lattice sites, and 

Au~=0 (19b) 

for all other pairs of sites• Equation (19b) makes explicit 
the fact that I do not consider steps between 
non-neighbouring sites. 

Equation (18) represents the statistical weight of one 
particular walk• I can extend it to represent the statistical 
weight of all walks starting at the specified site a and 
ending at the specified site co by summing over all possible 
values of fl, 7 . . . .  ~k: 

Q,~ = ZaZr  • • • ~*V ,,'~-Uo'/2kr'~no,. •. A~ljAa=e-U=/2kr(20) 

Each summation in equation (20) extends over all 
lattice sites. If we let A represent the matrix of A~ values 
and define a column vector V~ whose/~th element is 

(V~) u = e x p [ -  UdZk T]6,, (21) 

then equation (20) becomes 

Q,,,= (v6~) * x A N x Vg (22) 

The partition function of all chains having one end at 
site ~ is defined as Q, = ~o,Q,,o and may be written 

Q,=  Wx A N x Vo (23) 

if I define the row vector W such that 

W= Zo,(V6°) * (24) 

Defined in this way, the ~oth element of Wis 

Wo, = e x p [ -  Ud2kT  ] (25) 

Calculation of Q= would be unfeasible if I tried to store 
the entire A matrix in computer memory. However, this 
is not necessary• Note that every non-zero element of A 
is equal to x °, X 1, X 2, or x3; where x = e  a/2. Therefore, 
at the beginning of the calculation we can compute and 
store these few powers of x, and then look up the required 
values of Au~ whenever they are needed. By considering 
the sequence of vectors defined by 

Vj~ 1 = A x Vj = (26) 

with Vg defined as in equation (21), I have 

Q== Wx V~, (27) 

Therefore, I am only required to reserve enough 
memory to store Vj " and Vi~+1 simultaneously. The 
elements of Wcan also be looked up in the table of powers 
of x. An additional saving is realized if in computing a 
particular element of Vj~+ 1: 

[Vj~+ ,]u = X~ Au,[ Vj=]~ (28) 

I only consider non-zero values of A., and [Vi'],, (i.e., 
instead of letting v range over all lattme sites.) 

Figure 7 displays the value of 6-UQ, as a function of 
a, for ~ a site adjacent to the wall midway between the 
notches, i.e., a site such as the one labelled Z in Figure 4. 
The coil dimensions of the polymer relative to the size 
of the hexagon are such that Q= for ~--z is negligibly 
different from Q, for an infinite plane. In addition, 6 u is 
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Figure 7 Concentration of polymer chain ends at sites along the wall 
but distant from any notch (such as Z in Figure6) plotted as a function 
of a, the strength of the adsorption interaction. The concentrations 
displayed are relative to the concentration in the interior of the hexagon 
distant from any walls 
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Figure 8 Concentration of polymer chain ends at the sites A, B, C, 
. . . .  (as in Figure6), for various values of a, the strength of the 
adsorption interactions; a increases from 0 for the lowest curve to 0.5 
for the highest curve in increments of 0.I. The displayed concentrations 
are relative to concentrations along the wall but distant from the notch 
(site Z) 

the partition function of a chain distant from any 
boundaries. Therefore, Figure 7 gives the concentration 
of chain ends near an infinite wall relative to the 
concentration distant from the wall. I show in Appendix 
4 that the transition to adsorption, defined as the point 
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at which Q, = 6 N, occurs at a = ln(3/2) ~- 0.41. A transition 
near a = 0.41 is obvious in Figure 7. Figure 8 displays the 
ratio of the partition functions for the sites labelled A, 
B, C . . . .  in Figure 6 to the partition function for site Z. 
Therefore it represents the concentration of chain ends 
near the notch relative to the concentration near the wall 
but distant from the notch. It becomes clear from 
examination of Figures 7 and 8 that in instances of weak 
attraction, a < 0.41, chains avoid the notch more strongly 
than they do the wall, while for a>0.41,  chains are 
preferentially adsorbed in the notch. I also see that the 
deference for the notch exhibited by chains with small a 
weakens as the attractive energy increases or the 
temperature decreases. 

The chains in the calculation discussed above, with 
N = 1 0 0  and distant from any boundaries, have 
mean-square end-to-end distances of 100b 2, for b the 
distance between nearest neighbour lattice sites. If I am 
to use these two-dimensional walks as models of 
three-dimensional polymers, I must consider them to be 
plane projections of random walks of mean-square 
end-to-end distance 150b 2. If I let b be the distance 
between stems along the (110) direction of polyethylene 
crystals (4.55 A) and assume a characteristic ratio of 6.7 
(characteristic of polyethylene 19) I calculate that these 
chains correspond to polyethylene chains of molecular 
weight 2700. Higher molecular weights are expected to 
exhibit the same trends as those given above, but I do 
expect a much more severe depletion of the sites near the 
notch on the depletion side of the adsorption transition. 

I conclude that if no adsorption occurs, chains will 
make less contact with the boundaries near the notch 
than at sites distant from the notch, but with the 
frequency of contact increasing either with decreasing Rg 
(i.e., decreasing molecular weight) or increasing a (i.e., 
decreasing temperature). On the other hand, if 
adsorption does occur, chains will be attracted to the 
notch more strongly than to a flat wall. 

APPENDIX 4 

Position of the adsorption transition for the model of 
Appendix 3 

Random walks in the lattice model considered above 
are six-choice walks. It follows that walks distant from 
any wall have partition functions of 6 N. I can compute 
the statistics of such walks near a flat attractive wall by 
applying transfer matrix techniques similar to those 
employed above. If I consider a flat wall much larger 
than the coil size of the chain, additional simplifications 
occur, since the transfer matrix need only carry 
information about steps between adjacent planes, not 
adjacent lattice sites. Therefore, elements of the transfer 
matrix may be defined so that 

Au~ = 2 exp[--  (U u + UO/2kT ] (29) 

if plane # is accessible from plane v in a single step, i.e., 
ifp = v or # = v ___ 1. Auv is zero for all other pairs of planes. 
The factor 2 results because for this particular walk, there 
are always two degenerate paths in the transition v~ # .  
I assume that/~ and v are any positive integers, U u is the 
energy accumulated by a lattice site visiting the/~th plane. 
Therefore, U u = - a k T  if # = 1 ,  otherwise U u is 0. 
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Therefore, ifx = e °/2, the transfer matrix may be written as 

-2x  2 2x 

2x 2 2 

2 2 

2 A =  

2 

2 

2 

2 

2 2 

2 2 2 

(30) 

Chains near the wall will have partition functions equal 
to 6 N if the dominant eigenvalue of A is 6. Let us assume 
that the eigenvector corresponding to this eigenvalue is 
[y z 1 1 1 . . .] .  The requirement that the eigenvalue be 6 
yields the following equations: 

2x2y + 2xz = 6y 

2xy + 2z + 2 =6z (31) 

2 z + 4 = 6  

These equations are satisfied when 

X = (3/2) 1/2, y = (2/3) 1/2, z = 1 (32) 

which occurs when a=ln(3/2).  We conclude that the 
transition to adsorption occurs, for the present model, 
at a =1n(3/2)=0.41. 

APPENDIX 5 

First contact between a Brownian particle and the walls 
of a square 

In this appendix, I consider a Brownian particle 
initially at site (L/2, L/2, 0) at t = 0, which diffuses within 
a right rectangular tube bounded by the planes x = 0 ,  
x = L ,  y = 0 ,  and y = L .  I assume the particle migrates 
until it strikes one of the walls, and I ask for the 
probability distribution of the sites of first contact with 
the walls. In previous appendices, I have used the 
diffusion equation to model the conformational proper- 
ties of ideal, Gaussian polymer chains, letting t represent 
the number of backbone bonds in the chain. Now, I 
employ the same formalism to treat the truly dynamic 
problem of Brownian trajectories with t representing 
actual time. I am considering the dynamics of polymers 
diffusing i n solution over length scales much larger than 
the coil size, for which the coil can be thought of as a 
point-like particle. Therefore, I solve the diffusion 
equation, equation (1), subject to the boundary 
conditions W=0 at x = 0 ,  x = L ,  y=0 ,  and y=L;  
W = 6 ( x - L / 2 ) f ( y - L / 2 )  6(z) at t=0 .  For these 
boundary conditions, I can expand W in a Fourier 
expansion, retaining only the sine terms shown for the 
x and y dependence: 

.frcmx'~ s i n ( ~ ) e i k =  (33) W : ~ l  ~=z;~odkF. . (k  ) s l n ~ - ~ - )  

This equation yields to the usual techniques, I obtain 
for example: 

Fm.(k)=(2/gL 2) sin[~m/2] sin[tin/2] e -°'k: 

V-Dtlt2 2 +n2)]  (34) x expL- ~ (m 

Note that only odd values of m and n contribute. I 

want to consider the following function of x: 

f f f  +=dz°w  r (0~<x~<L) (35) (1)(x) = D dt -~  = o  

The quantity 

D ~-y~r=o 

is the probability density that the Brownian particle is 
absorbed in the surface element dx dz during the time 
interval dr. Therefore ~(x) gives the probability that the 
particle is absorbed in the interval (x, x + dx) at any time 
and for all values of z, i.e., it is the probability distribution 
of the site of first contact with the wall. The derivative 
and the integrals appearing in equation (35) are all 
straightforward and I do not outline them here. With the 
aid of a tabulated series is I obtain: 

1 c° sin[tom/2] 
q~(x)=L- Z -  sin(nmx/L) (36) 

m = 1 cosh[nm/2] 

The m = 3 and higher terms in the above series only 
contribute about 1% to the sum, therefore 

• (x) ~ sin (nx/L)/L cosh (rr/2) (37) 

which implies that 

• ( x ) ~ x  (38) 

at small x. 

APPENDIX 6 

First contact between a Brownian particle and a 
rectangular notch 

This appendix treats the same problem as Appendix 
5, except for a different geometry. I initiate the Brownian 
particle at the site (L, L, 0), and place absorbing 
boundaries at y = 0  and x = 0 ;  i.e., I consider diffusion 
everywhere in the first quadrant. This problem is best 
treated by the method of images, in the same manner as 
in Appendix 1. I must place two sources at (L, L, 0) and 
at ( - L ,  - L ,  0), and two sinks at (L, - L ,  0) and 
( -L ,L ,O) .  I may write the following for W: 

W= (4nDt)- a/2 Eico i exp[  - (~ - si)21 ~ t t  ] (39) 

where 

co 1 = 1 092 = - 1 0) 3 = 1 0)4 = - 1 (40a) 

s 1 = (L,L,O) s 2 = (L, - L , O )  

s a = ( - L ,  - L , O )  s 4 = ( - L , L , O )  (40b) 

The analogue of equation (35) in this case is 

('~ /'+oo 0yWy=o 
q~(x)=O Jo dt J_~ dz (0~x)  (41) 

Once again, the derivative and the integrals shown in 
equation (41) are straightforward. I obtain 

• (x) = (nL)- x [ ( q 2  _ 2q + 2)- 1 _ (q2 + 2q + 2)- z] (42) 

where 

q = x/L (43) 
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At small x this behaves as 

• (x) ~ x 

just as in the previous case. 

(44) 

APPENDIX 7 

First contact between a Brownian particle and a notch 
I consider the same problem as Appendix 6, except 

that now the notch makes an arbitrary angle ~, and I 
apply the notation and the coordinate system of 
Appendix 2. I initiate the walk at the point (p, 0, z)= 
(Po, 0, 0). Therefore, for our purposes, we obtain W by 
setting 0 0 =0 in equation (6): 

W = 4ct- in-  1/2(4Dt)- 3/2 exp[-- (Z 2 -~- p2 q_ p2)/4Dt] 

x ~ / '  (24~t°) sin ( 2 )  sin [ ~  (0 + ct/2)l .=1 (45) 

where s--- nn/ct. The function representing the distribution 
of first contact sites is now written: 

fo ~ r + ~ 1 0wi • (p) =D dt / d z - - - i  (0~<p) (46) 
J_~ p aO Io= _=/~ 

I have been unable to obtain an expression valid for 
arbitrary p, but I can make progress if I focus my 
attention on small p. At small p the Bessel function Is(x ) 
obeys: 

Is(x ) = (x/2)S[F(s + 1)]-1 (47) 

Performing the 0 derivative and the z integral 
appearing in equation (46), and using equation (47) to 
represent the Bessel function yields: 

( I ) ( p ) = ~  ~ n(PP°Y ~," sin(nn/2)  [ ® d t  
.=1 \ 4 D )  F(nn/0~+ l) Jo 

+../,) ex F - (p2 + po2)l 
X t - ( 1  P[ 4-Dr ] (small p) (48) 

The substitution p = t-1 brings this into the form of 
equation (13). I finally obtain 

(ID(p)=p-l'/l~-l/20~-i ~.~ ( ~ y ' / ' s i n ( n n / 2 ) ( 4 9 )  
. = 1 \P  + Po/ 

Assuming P<<Po and selecting the n= 1 term only (valid 
for small enough p) yields: 

~(p)  ~ p(=/=- 1) (50) 

This agrees with the small x results of the last two 
appendices if I set a=n/2,  as expected. Interestingly 
enough, equation (50) also predicts the surface charge 
density generated on a wedge or notch by a line charge 21. 

APPENDIX 8 

Probability of first contact between a diffusing Brownian 
particle and a twin polymer crystal 

In this appendix, I consider the diffusion of a Brownian 
particle in the domain pictured in Figure 9. I assume that 
at t=0  the Brownian particle lies somewhere on the 
perimeter of the outer square of side 20, and that it begins 
diffusing in the interior of the square. The walls of the 
square are reflecting boundaries. The particle is permitted 
to diffuse until making contact with the perimeter of the 
smaller polygon in the interior of the square. The smaller 
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polygon represents, of course, the twin crystal. Since the 
domain is bounded, all Brownian particles will eventually 
strike the crystal. I seek the probability distribution of 
first contacts as a function of position on the perimeter 
of the crystal. Fioure10 displays in more detail the 
assumed structure of the crystal. It has sides of length 1 
and 2, as shown, and the interior angles shown. Figure 10 
also defines the coordinate p for this system, which 
specifies positions on the perimeter, p varies from 0 to 
4, being 0 at the corner of the notch, 1 at either of the 
two horns, etc. onto 4 at the tip. 

The distribution of first contact positions would be 
given formally by the solution of the diffusion equation, 

i 

2Z 

Figure 9 Geometry of the domain employed in the Brownian 
dynamics calculation of Appendix 8 
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Figure 10 Geometry of the domain employed in the Brownian 
dynamics calculation of Appendix 8 

POLYMER, 1989, Vol 30, September 1631 



Statistics of polymer chains: All. L. Mansfield 

just as in the last few appendices. However, the boundary 
value problem is undoubtedly too difficult to treat exactly 
and I therefore have examined the question by performing 
a Brownian dynamics simulation. 

In a Brownian dynamics simulation, one begins at a 
particular point P1 in phase space and, for a given time 
increment At, moves to a new point P2 in such a way 
that the transition P1 --, P2 is representative of all possible 
transitions away from the point P1 over the time interval 
At. In other words, one selects a new point P2 in such a 
way that if the choice were made a large number of times, 
the new points P2 would be distributed according to the 
distribution function expected at t = At given that the 
distribution function was a Dirac 6 function centred at 
P~ at t = 0. In the absence of any boundaries or external 
fields, the distribution function at t = At is just a simple 
Gaussian. In the presence of boundaries, the distribution 
function is still Gaussian over times At small enough that 
the probability of actually reaching the boundary is 
negligible. I can make use of this fact in the present case 
by being careful always to choose a value of At small 
enough that the boundary would actually be reached 
with only a very small probability. Then in those 
infrequent cases where one actually does reach the 
boundary, I discard that particular step and try again. 
As the Brownian particle moves closer and closer to the 
boundary one takes smaller and smaller time steps, so 
that the boundary will, in fact, never be reached. 
Nevertheless, one still moves, after a large number of 
steps, arbitrarily close to the boundary. Therefore, I 
consider it a strike between the particle and the boundary 
once the particle has moved to within an arbitrary but 
small distance from the boundary. Also, in the present 
situation, one only needs to take progressively smaller 
time steps as we approach the perimeter of the crystal, 
not the perimeter of the outer square. Since the perimeter 
of the outer square is a reflecting boundary, I can treat 
excursions across this boundary by what amounts to the 
method of images. If, after any time step, the particle 
finds itself outside the outer square, move it back in by 
reflecting it through the walls of the square. 

The following steps summarize the Brownian dynamics 
algorithm actually employed: 
(1) Compute the minimum distance between the current 
position and the perimeter of the crystal. Call this d. Stop 
if d<el for el an arbitrarily chosen small number. 
(2) Select a value At such that a Brownian particle in 
free space has negligible probability of moving a distance 
d or more. For two-dimensional diffusion, this can be 
the value of At which satisfies 

;: 1 2nr exp d r = e  2 (51) 
4~At ~ -  

or  

_ d  2 
At = - -  (52) 

4(In e2) 

for e2 an arbitrarily chosen small number. 
(3) Given this value of At, select a displacement Ar = (Ax, 
Ay) distributed according to the distribution function 

4nAt L 4At j 
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Figure 11 Number of Brownian particles arriving in the interval 
(p-h/2, p+h/2) as a function of p for the Brownian dynamics 
calculation of Appendix 8 

Then move to the new position r + Ar. 
(4) If the new position lies outside the outer square, 
generate the actual new position by reflecting through 
the walls of the square. 
(5) If the new point lies inside the crystal, reject this move, 
and go back to the previous position. 
(6) Repeat steps 1 through 5 until the d<el criterion of 
step 1 is satisfied. When it is, record the value of p at 
which the particle meets the crystal, and initiate a new 
particle at the outer boundary. 

Clearly, this approach will exactly simulate solutions 
to the diffusion equation only in the limit of vanishingly 
small el and e2. In practice, one faces a compromise since 
the computation time diverges as either el or e2 vanishes. 

Figure I 1 displays the function ~(p) obtained by this 
approach, where O(p)dp is the probability that the 
Brownian particle is adsorbed on the crystal in the 
interval (p, p + dp). Figure 11 actually displays the 
integral of ~(p) over an interval of width h=0.01, i.e., 
the fraction of particles arriving in the interval (p-h/2, 
p+h/2). Near the singularities, such an integral is 
sufficiently different from ~(p) times h that this distinction 
is necessary. Note that singularities occur at p = 1, 3 and 
4, and that a zero occurs at p = 0. Based on the results 
of the last three appendices, I expect • to be proportional 
to p~O for Vo = (180/113)- 1 = 0.5929 near p = 0; to p -  1 [~' 
for v 1 = (180/303.5)- 1 = -0.4069 near p = 1 ; to p - 3v3 
for va=(180/236 .5) -1=-0 .2389  near p = 3 ;  and to 
Ip-4l  TM for v , =  (180/247)-1 = -0.2713 near p=4 .  The 
simulation data prove to be consistent with these power 
laws. 

Therefore, I conclude that Brownian particles diffusing 
onto the crystal from large distances make contact with 
a corner or notch with a probability density that depends 
on the distance d from the notch or corner according to 
the power law d t"/'- 1) for ~ the angle subtended by the 
notch or corner. For ~ < n, the exponent is positive and 
the probability vanishes in the notch. If ~=n/2, the 
exponent is 1, in agreement with the results of Appendices 
5 and 6. If ~ = n, the exponent is zero, meaning that to 
lowest order in d, the probability density is uniform. If 
~ > n ,  the exponent is negative, implying that the 
probability density diverges. (However, the exponent 
n / ~ - l > - i  always, so that the integral of the 
probability density remains finite.) 
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